Standards, frameworks, and legislation for artificial intelligence (AI) transparency
Brady Lund, Zeynep Orhan, Nishith Reddy Mannuru, Ravi Varma Kumar Bevara, Brett Porter, Meka Kasi Vinaih, and Padmapadanand Bhaskara
Abstract
The global landscape of transparency standards, frameworks, and legislation for artificial intelligence (AI) shows an increasing focus on building trust, accountability, and ethical deployment. This paper presents comparative analysis of key frameworks for AI transparency, such as the IEEE P7001 standard and the CLeAR Documentation Framework, highlighting how regions like the United States, European Union, China, and Japan are addressing the need for transparent and trustworthy AI systems. Common themes across these standards include the need for tiered transparency levels based on system risk and impact, continuous documentation updates throughout the development and revision processes, and the production of explanations tailored to various stakeholder groups. Several key challenges arise in the development of AI transparency standards, frameworks, and legislation, including balancing transparency with privacy, ensuring intellectual property rights, and addressing security concerns. Promoting adaptable, sector-specific transparency regulatory structures is critical in the development of frameworks flexible enough to keep pace with AI’s rapid technological advancement. These insights contribute to a growing body of literature on how best to develop transparency regulatory structures that not only build trust in AI but also support innovation across industries.
Full-Text:
References
-
Artificial Intelligence Research, Innovation, and Accountability Act of 2023, S. 3312 (2024)
-
Attard-Frost, B., De los Ríos, A., Walters, D.R.: The ethics of AI business practices: a review of 47 AI ethics guidelines. AI Ethics 3(2), 389–406 (2023)
-
Australian Government: Artificial Intelligence Ethics Framework (2021). Retrieved from https://www.industry.gov.au/data-and-publications/building-australias-artificial-intelligence-capability/ai-ethics-framework
-
Balasubramaniam, N., Kauppinen, M., Rannisto, A., Hiekkanen, K., Kujala, S.: Transparency and explainability of AI systems: from ethical guidelines to requirements. Inf. Softw. Technol. 159, article 107197 (2023)
-
Bareis, J., Katzenbach, C.: Talking AI into being: the narratives and imaginaries of national AI strategies and their performative politics. Sci. Technol. Hum. Values 47(5), 855–881 (2022)
-
Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623 (2021)
-
Bhalla, N., Brooks, L., Leach, T.: Ensuring a ‘Responsible’ AI future in India: RRI as an approach for identifying the ethical challenges from an Indian perspective. AI Ethics 4, 1409–1422 (2023)
-
Binns, R.: Fairness in machine learning: lessons from political philosophy. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pp. 149–159. Association for Computing Machinery (2018)
-
Booker, C.: U.S. Senate Introduces the Algorithmic Accountability Act (2023). https://www.booker.senate.gov
-
Borenstein, J., Howard, A.: Emerging challenges in AI and the need for AI ethics education. AI Ethics 1, 61–65 (2021)
-
Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G., Chisholm, W., Slatin, J., White, J.: Web content accessibility guidelines (WCAG) 2.0. In: WWW Consortium (W3C), 290(1–34), pp. 5–12 (2008)
-
Castelvecchi, D.: Can we open the black box of AI? Nat. News 538(7623), 20–23 (2016)
-
Chmielinski, K., Newman, S., Kranzinger, C.N., Hind, M., Vaughan, J.W., Mitchell, M., et al.: The CLeAR Documentation Framework for AI Transparency. Shorenstein Center on Media, Politics and Public Policy (2024). https://shorensteincenter.org/clear-documentation-framework-AI-transparency-recommendations-practitioners-context-policymakers/
-
Coeckelbergh, M.: AI ethics. The MIT Press (2020)
-
Daneshjou, R., Smith, M.P., Sun, M.D., Rotemberg, V., Zou, J.: Lack of transparency and potential bias in artificial intelligence data sets and algorithms: a scoping review. JAMA Dermatol. 157(11), 1362–1369 (2021)
-
Dey, A., Cyrill, M.: India’s regulation of AI and large language models (2024). India Briefing. https://www.india-briefing.com/news/india-regulation-of-ai-and-large-language-models-31680.html/
-
Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models: an empirical study of how explanations impact fairness judgment. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 275–285. Association for Computing Machinery (2019)
-
Commission, E.U.: Proposal for a regulation laying down harmonised rules on artificial intelligence. Brussels 21, 2021 (2021)
-
European Parliament: Artificial Intelligence Act: MEPs adopt landmark law (2024). https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law
-
Everson, J., Smith, J., Marchesini, K., Tripathi, M.: A regulation to promote repsonsible AI in health care. Health Aff. (2024). https://doi.org/10.1377/forefront.20240223.953299
-
Felzmann, H., Fosch-Villaronga, E., Lutz, C., Tamò-Larrieux, A.: Towards transparency by design for artificial intelligence. Sci. Eng. Ethics 26(6), 3333–3361 (2020)
-
Fernandez-Quilez, A.: Deep learning in radiology: ethics of data and on the value of algorithm transparency, interpretability and explainability. AI Ethics 3(1), 257–265 (2023)
-
Goodall, N.J.: Machine ethics and automated vehicles. In: Meyers, G., Beiker, S., Road Vehicle Automation, pp. 93–102. Springer (2014)
-
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J.W., Wallach, H., Daumé, H., III., Crawford, K.: Datasheets for datasets. Commun. ACM 64(12), 86–92 (2021)
-
Government of Canada: Directive on Automated Decision-Making (2021). Retrieved from https://www.tbs-sct.gc.ca/pol/doc-eng.aspx?id=32592
-
Hickman, T., Zaidi, Z., Mair, D.: AI Watch: Global regulatory tracker—OECD (2024). White & Case. https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-tracker-oecd
-
Hickok, M.: Lessons learned from AI ethics principles for future actions. AI Ethics 1(1), 41–47 (2021)
-
Hind, M., Houde, S., Martino, J., Mojsilovic, A., Piorkowski, D., Richards, J., Mojsilović, A.: Experiences with improving the transparency of AI models and services. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–8. Association for Computing Machinery (2020)
-
Holland, S., Hosny, A., Newman, S., Joseph, J., Chmielinski, K.: The Dataset Nutrition Label: A Framework to Drive Higher Data Quality Standards. arXiv preprint arXiv:1805.03677 (2018)
-
Hutchinson, B., Smart, A., Hanna, A., Denton, E., Greer, C., Kjartansson, O., et al.: Towards accountability for machine learning datasets: practices from software engineering and infrastructure. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 560–575. Association for Computing Machinery (2021)
-
IEEE Standards Association: IEEE Standard for Transparency of Autonomous Systems, pp.1–54. IEEE Std, 7001-2021 (2022)
-
Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1(9), 389–399 (2019)
-
Kamiya, M., Keate, J.: AI Watch: Global regulatory tracker—Japan. White & Case (2024). https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-tracker-japan
-
Kazim, E., Koshiyama, A.: The interrelation between data and AI ethics in the context of impact assessments. AI Ethics 1, 219–225 (2021)
-
Larsson, S., Heintz, F.: Transparency in artificial intelligence. Internet Policy Rev. 9(2), 1–16 (2020)
-
Lauer, D.: You cannot have AI ethics without ethics. AI Ethics 1, 21–25 (2020)
-
Lauw, N., Ching, P.F., Cheng, A.: Part 4—AI Regulation in Asia (2024). RPC. https://www.rpclegal.com/thinking/artificial-intelligence/ai-guide/part-4-ai-regulation-in-asia
-
Lund, B.D., Wang, T., Mannuru, N.R., Nie, B., Shimray, S., Wang, Z.: ChatGPT and a new academic reality: artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. J. Am. Soc. Inf. Sci. 74(5), 570–581 (2023)
-
Luong, N.: China’s AI governance: Engaging the global South (2024). National Bureau of Asian Research. https://www.nbr.org/publication/chinas-ai-governance-engaging-the-global-south/
-
Madaio, M.A., Stark, L., Wortman Vaughan, J., Wallach, H.: Co-designing checklists to understand organizational challenges and opportunities around fairness in AI. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery (2020)
-
Mannuru, N.R., Shahriar, S., Teel, Z.A., Wang, T., Lund, B.D., Tijani, S., et al.: Artificial intelligence in developing countries: the impact of generative artificial intelligence (AI) technologies for development. Inf. Dev. (2023). https://doi.org/10.1177/02666669231200628
-
Memarian, B., Doleck, T.: Fairness, accountability, transparency, and ethics (FATE) in artificial intelligence (AI) and higher education: a systematic review. Comput. Educ. Artif. Intell. 5, article 100152 (2023)
-
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
-
Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Gebru, T.: Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 220–229. Association for Computing Machinery (2019)
-
Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2020)
-
National Artificial Intelligence Advisory Committee: Towards standards for data transparency for AI models (2024). https://ai.gov/wp-content/uploads/2024/06/PROCEEDINGS_Towards-Standards-for-Data-Transparency-for-AI-Models.pdf
-
Ng, A.: Written Statement of Andrew Ng Before the U.S. Senate AI Insight Forum, December 11, 2023 (2023). https://aifund.ai/insights-written-statement-of-andrew-ng-before-the-u-s-senate-ai-insight-forum/
-
Okolo, C.T.: Reforming data regulation to advance AI governance in Africa (2024). Brookings. https://www.brookings.edu/articles/reforming-data-regulation-to-advance-ai-governance-in-africa
-
Pagallo, U.: The legal challenges of big data: putting secondary rules first in the field of EU data protection. Eur. Data Prot. Law Rev. 3, 36 (2017)
-
Pushkarna, M., Zaldivar, A., Kjartansson, O.: Data cards: purposeful and transparent dataset documentation for responsible AI. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1776–1826. Association for Computing Machinery (2022)
-
Quinn, M., Piper, B., Bliss, J.P., Keever, D.: Recommended methods for using the 2020 NIST principles for ai explainability. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 2034–2037. IEEE (2020)
-
Reinhardt, K.: Trust and trustworthiness in AI ethics. AI Ethics 3(3), 735–744 (2023)
-
Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Machinery (2016)
-
Richards, J., Piorkowski, D., Hind, M., Houde, S., Mojsilović, A.: A Methodology for Creating AI FactSheets (2020). arXiv preprint arXiv:2006.13796
-
Ridley, M.: Explainable artificial intelligence (XAI): adoption and advocacy. Inf. Technol. Libr. 41(2), 1–17 (2022)
-
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
-
Ruggeri, A.: Davos 2024: Can—and should—leaders aim to regulate AI directly? World Economic Forum (2024). https://www.bbc.com/worklife/article/20240118-davos-2024-can-and-should-leaders-aim-to-regulate-ai-directly
-
Schiff, D.: Education for AI, not AI for education: the role of education and ethics in national AI policy strategies. Int. J. Artif. Intell. Educ. 32, 527–563 (2022)
-
Shin, D.: Toward fair, accountable, and transparent algorithms: Case studies on algorithm initiatives in Korea and China. J. Eur. Inst. Commun. Cult. 26(3), 274–290 (2019)
-
Srinivasan, R., Ghosh, D.: A new social contract for technology. Policy Internet 15(1), 117–132 (2023)
-
Stoyanovich, J., Howe, B.: Nutritional labels for data and models. IEEE Data Eng. Bull. 42(3), 13–23 (2019)
-
Swaminathan, N., Danks, D.: Application of the NIST AI Risk Management Framework to Surveillance Technology (2024). arXiv preprint arXiv:2403.15646
-
Theodorou, A., Wortham, R.H., Bryson, J.J.: Designing and implementing transparency for real time inspection of autonomous robots. Connect. Sci. 29(3), 230–241 (2017)
-
Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., Floridi, L.: The ethics of algorithms: key problems and solutions. AI Soc. 37, 215–230 (2021)
-
Von Eschenbach, W.J.: Transparency and the black box problem: why we do not trust AI. Philos. Technol. 34(4), 1607–1622 (2021)
-
Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-making does not exist in the general data protection regulation. Int. Data Privacy Law 7(2), 76–99 (2017)
-
Wang, Q., Li, R., He, G.: Research status of nuclear power: a review. Renew. Sustain. Energy Rev. 90, 90–96 (2018)
-
Werner, J.: Russia updates national AI strategy (2024). Babl AI. https://babl.ai/russia-updates-national-ai-strategy/
-
Winecoff, A.A., Bogen, M.: Improving governance outcomes through AI documentation: Bridging theory and practice (2024). arXiv preprint arXiv:2409.08960
-
Winfield, A.F., Booth, S., Dennis, L.A., Egawa, T., Hastie, H., Jacobs, N., et al.: IEEE P7001: a proposed standard on transparency. Front. Robot. AI 8, 665729 (2021)
-
Wulf, A.J., Seizov, O.: Artificial intelligence and transparency: a blueprint for improving the regulation of AI applications in the EU. Eur. Bus. Law Rev. 31(4), 611–640 (2020)
-
Yekaterina, K.: Challenges and opportunities for AI in healthcare. Int. J. Law Policy 2(7), 11–15 (2024)